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A B S T R A C T   

Knowledge graphs represent relationships between entities. These graphs can take dynamic forms to trace 
changes along time through text models and further used by reasoning systems with the intent to answer queries. 
In this research we explore their applicability for extracting temporal patterns of knowledge in the form of 
communities. To this end, we propose a method for generating knowledge relationships over unconnected 
components of a knowledge graph, allowing for a targeted exploration of emerging contents in corpora. This 
analysis is applied to the corpora of the Conference on Knowledge Discovery and Data Mining (KDD) publications 
over the last decade. We find the key knowledge communities over time and rank the underlying concepts. 
Results show that the publication efforts increasingly focus on graph research and the creation of relationships 
instead of new concepts. The acquired results confirm the validity of the proposed knowledge discovery meth
odology for community-centered analysis of emerging changes in dynamic knowledge graphs.   

1. Introduction 

The creation and completion of knowledge graphs (KG) has been 
increasingly important in recent years [1–3] as search and knowledge 
engines require these structures to perform reasoning tasks. Although 
the existing literature has made significant progress on the generation 
and optimization of static knowledge graphs for reasoning tasks [4,5], 
the capacity to tap into the dynamic character and longitudinal evolu
tion of knowledge within specific domains is not yet mature [6]. 

The application of network science methodologies may prove to be 
pertinent in the examination of the evolution of knowledge structures 
[7]. This can be achieved by the quantification of structural changes 
within knowledge networks. This critical void deprives a variety of 
stakeholders–from academia to industry and government–of the means 
to comprehend how expertise and knowledge evolve over time, a defi
ciency that could have repercussions for innovation and strategic 
decision-making. To address this gap, this work focuses on the following 
question: How can network science be used to trace the evolution of 
knowledge within a dynamic knowledge graph? And, can this analysis 
be used to generate high impact knowledge candidates? Grounded on 
techniques from network science and community detection, our study 
introduces a new analytical framework that shifts the paradigm from 

static reasoning to dynamic topological and temporal analysis. We do 
not limit ourselves to theoretical contributions; rather, we apply this 
framework to papers from the KDD Conference in a real-world case 
study. In doing so, we not only open a new frontier for knowledge graph 
research, but also provide actionable insights that are crucial for the 
success of organizations across multiple industries. 

This research is focused on capturing not only trends in knowledge 
graphs, but on the evolution of knowledge in a particular field. In this 
context, a tool to these ends can help relate abstract ideas [8] based on 
network science principles, being of notable relevance. The knowledge 
evolution is based on formal knowledge advancement and emphasizes 
group knowledge creation through knowledge graphs. Consequently, it 
is essential to consider methods for tracing changes in ideas when 
attempting to capture the development of collective knowledge. In 
network science, concepts are represented as clusters of words due to the 
fact that communities share and enhance concepts through the use of 
language in their discourse in order to advance collective knowledge 
[9]. The research in graph generation and evolution is quite recent and 
growing at a fast pace [10]. 

The behavior of entities and how they contribute to the formation of 
facts over time can be better understood using dynamic knowledge 
graphs that capture temporal dependencies between facts in addition to 
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the relational (structural) dependencies [11]. Two major distinct defi
nitions of temporal knowledge graphs can be found in the literature. 
First, Temporal Knowledge Graphs (TKGs) [11,13], are structures that 
tie each piece of information or occurrence to a definite timestamp, 
reflecting the knowledge state at that exact point. They are technically 
defined as G={(e1, e2, r, t), where,}, where every triple contains a subject 
entity, a relation, an object entity, and a specific time point (t). This 
architecture records the chronological progression of interrelations. 

On the other hand, Discrete Time Dynamic Graphs (DTDGs) [12] 
present information in separate, unchanging segments, each symboliz
ing the conditions at a certain period. A DTDG consists of multiple static 
graphs G = {G1,G2,…,GT}, with each Gt = {(e1,r,e2): e1,e2 ∈ E,r ∈ R} 
containing nodes and connections applicable for the period . This 
approach facilitates interval-based scrutiny, providing a detailed but 
segmented perspective on the development of knowledge. Here, E is the 
set of all entities and R is the set of all relationships. Each triple in Gt is 
valid at time t. For example, if G1 contains the triple (“Paris”, “is capital 
of”, “France”), this triple is valid at the time represented by G1. This 
definition captures the dynamic nature of knowledge graphs by arran
ging them as a sequence of static snapshots, each representing the state 
of the world at a specific time. 

Our study particularly implements the DTDG definition, recognizing 
its strategic advantage in temporal analysis. In this sense, we aim to use 
network community finding and network metrics over time to under
stand the evolution of knowledge in a specific context. This means that 
the focus of this analysis deviates from the classic reasoning focused 
approach. Instead, it focuses on looking at evolving topological features 
and network science techniques to grasp characteristics of meta- 
knowledge. Meta-knowledge refers to higher-level information that 
describes the structural and semantic properties of the graph, rather 
than the individual data points (nodes and edges) themselves. This in
cludes the identification of communities within the graph, which are 
clusters of nodes that are more densely interconnected with each other 
than with the rest of the graph. Meta-knowledge also captures centrality 
measures that identify the most influential or well-connected nodes 
within these communities or the graph at large. These higher-order 
features provide a macroscopic view of the knowledge graph, offering 
insights into its overall architecture and the roles or importance of 
specific entities within it. a technical contribution of this idea is the 
analysis of evolving topological features of knowledge as well as a 
baseline for generative knowledge graph-based impact recommender 
system (Fig. 3). In the field of recommender systems, the pursuit of 
enhancing connections within Knowledge Graphs (KGs) is pivotal for 
driving innovation and interpretability. Traditional methods, heavily 
reliant on singular connected components, limit the breadth and depth 
of recommendations. Our approach, delineated in this paper, introduces 
an algorithm—the Knowledge Connector Candidate (KC2)—that tran
scends these constraints by targeting the most influential connections 
across weakly linked subgraphs. By leveraging the power of logarithmic 
normalization of centrality, our method not only identifies but also 
prioritizes the integration of previously isolated knowledge components. 

This meta-knowledge discovery is important because it can help 
people in business, science, medicine, academia, government, and other 
fields to extract information from datasets [14]. To this end, the paper’s 
main contributions are two fold. First, it proposes a dynamic knowledge 
graph longitudinal analysis based on network science and community 
detection principles. Allowing us to understand the evolution and size of 
different Knowledge domains, distribution of degrees, and potential 
connections among knowledge communities. Secondly, the instantiation 
of this analysis on a particular context and corresponding implications. 
This knowledge understanding is vital for any organization’s success 
[15]. In particular, we apply this analysis to the papers from KDD 
(Conference on Knowledge Discovery and Data Mining) since the focus 
on this case study allows us to acquire meta-knowledge on research 
about knowledge discovery. Hence by analyzing such relevant pro
ceedings, that devote by several decades on the topic of knowledge 

understanding and discovery, results unveil future impactful scientific 
connections. 

The paper is structured in five sections, starring by providing an 
overview of the context and aims of the paper, in section one. In section 
two, it presents the literature review. The third section conveys the 
methodological approach used to achieve the objectives of the study. 
The fourth section presents the empirical part of the study, compre
hending the results and discussion. Finlay, the fifth section presents the 
main conclusions, contributions, implications of the present study. 

2. Background and related work 

2.1. Knowledge graph construction 

The construction of knowledge graphs has been suggested as a 
promising area of study for the improvement of search and question- 
answering engines [16–18]. A paper by Khapra et al. [19] examines 
the challenge of automatically generating question-answer pairs from a 
given knowledge network. Using existing biology literature, Lamurias 
et al. [20] aimed to construct a knowledge network for tolerogenic cell 
therapy automatically. Under this idea of knowledge graph construc
tion, Yochum et al. [21] are developing a knowledge-based recom
mendation algorithm for the travel industry. Recent research by Krinkin 
et al. [22] discusses the problems now faced by cable TV operators’ 
telecommunications network monitoring systems and the models used 
to resolve these problems. In that proposal for user monitoring, a 
knowledge graph is generated based on a set of ontological represen
tations and is used to integrate knowledge from different sources and 
models. Knowledge graphs, which provide context regarding genuine 
and informal interactions between items in the real world, are important 
if semantically rich data formats are to be used in intelligent real-world 
situations. This need is based on the importance of knowledge graphs. 
Rezaei et al. [23] provide a strategy for constructing knowledge graphs 
that meet this objective in the research. Crowdsourcing techniques like 
task delegation and reverse captcha generation have been used to build a 
knowledge graph in the realm of educational systems [24]. The most 
recent generation of knowledge graphs lacks a clear representation of 
the information offered in research papers. In light of this, Dessi et al. [4] 
offer an architecture for extracting entities and relationships from 
research papers and integrating them in a large-scale knowledge 
network using Natural Language Processing and Machine Learning 
methodologies. Du et al. contributed to the literature on constructing 
knowledge graphs by building a method that indexes organized and 
unstructured content on a single knowledge graph [25]. Venkatesh 
developed an original cloud-based method for establishing a knowledge 
graph. This was done in order to produce a unified body of knowledge 
[26] by relating data with both structured and unstructured formats. 
Kittenberger’s [27] method for including and managing ambiguity 
insertion in knowledge graphs is another important and possibly 
game-changing piece of work. When it comes to creating knowledge 
graphs, KnowGL is a recent and high-preforming algorithm to generate 
triplets from phrases [28]. Unlike the previously mentioned works, the 
research presented in this paper accounts for the temporal (chronolog
ical) component of the existing literature through generating dynamic 
knowledge graphs. Zhang et al. [16], Li et al. [17], and Veena et al. [18] 
build knowledge graphs for search and Q&A, but neglect temporal as
pects, which our research incorporates. As in Khapra et al. [19] focus on 
QA pair generation within knowledge networks, omitting the dynamic 
capabilities we introduce. However, Lamurias et al. [20] craft 
domain-specific biomedical knowledge graphs but lack a generalized 
approach, which our work provides. As well, Yochum et al. [21] 
specialize in travel recommendations but do not adapt to other contexts, 
an adaptability our research aims for. Krinkin et al. [22] create knowl
edge graphs for cable TV network monitoring, lacking broader appli
cability, whereas our method is more general. Rezaei et al. [23] 
prioritize semantic richness but are not dynamically adaptive, a gap our 
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study fills. Dessi et al. [4] extract research paper entities but overlook 
temporal research trends, which we capture. Other studies, Du et al. 
[25] and Venkatesh [26] integrate structured and unstructured data but 
are not dynamically evolving, a feature we incorporate. Kittenberger 
[27] manages knowledge graph ambiguity but excludes time-sensitive 
data, which our approach includes. 

2.2. Dynamic knowledge graphs 

Studies on the generation of dynamic knowledge graphs or dynamic 
knowledge graph creation (KGC) are scarce, yet rapidly emerging. To 
this purpose, Trivedi et al. [11] propose Know-Evolve, a deep evolu
tionary knowledge network that acquires and adapts non-linearly 
changing entity representations. Using knowledge-to-text comprehen
sion and a low-variance gradient estimator for discrete latent variable 
models, Das et al. [29] build upon this research. To tackle the afore
mentioned problem, Wu et al. [30] propose a context-aware Dynamic 
Knowledge Graph Embedding (DKGE) approach that enables the 
embedding of learning in a web-based application, this kind of appli
cation uses the dynamic features of the graph to perform link prediction 
and question answering. Using a dialogue corpus from a well-known 
television series, Tuan et al. [31] provide a method for constructing 
knowledge graphs using conversational comprehension tasks (DyKg
Chat). To contribute to the current literature, Xie et al. [32] present a 
new deep recurrent neural network-based dynamic KGC model that 
depends on structural and textual features equally (DKGC-JSTD) 
allowing for a topological dependence on the completion of the 
knowledge graph. Most current KGE methods do not take into account 
how the structure of dynamic knowledge graphs has evolved over time 
(DKGs). To solve this issue, Tang et al. [33] suggest a solution called 
Timespan-aware Dynamic knowledge Graph Embedding Evolution 
(TDG2E), which accounts for the evolving nature of DKGs across time. 
Tay et al. [34] propose Parallel Universe TransE (puTransE), which 
consists of an adaptation of a translational model to make more precise 
predictions about connections within evolving networks of information. 
The current work will extend the concept of dynamic knowledge graphs 
by using KnowGL, the best method for generating static knowledge 
graphs at the present time [28]. This extension is justified since the 
knowledge on the papers is assumed in equal intervals (yearly) and the 
descriptive analysis would be impacted by the link prediction over the 
aggregate graph. In that sense, we use only the knowledge described 
within the papers. 

Among the works dealing with dynamic knowledge graphs, Trivedi 
et al. [11] make an interesting proposal with Know-Evolve but fall short 
of providing a robust methodology for the actual construction of these 
dynamic graphs. Das et al. [29] and Wu et al. [30] touch upon some of 
the same challenges but do not integrate historical data in a meaningful 
way. Tay et al. [34] propose puTransE but limit its scope to making 
predictions within evolving networks, without considering a method for 
creating these dynamic networks. While Tang et al. [33] do account for 
the temporal aspects of dynamic knowledge graphs, their methodology 
is not generalizable for all types of graphs, which is a gap our work aims 
to fill. 

2.3. Pattern finding in dynamic knowledge graphs 

Another relevant challenge in this area is finding patterns in dynamic 
knowledge graphs. Patterns in dynamic knowledge graphs are signifi
cant because they can be used to describe the local characteristics of 
dynamic networks and forecast future behavior [35]. Some of these 
patterns can be seen as sub-graphs contained inside a larger knowledge 
graph. This is done on a massive search space of seed candidates, which 
means a lot of time is wasted looking for candidates that are not likely to 
be efficient when attempting to find isomorphic subgraphs covering a 
given area [36]. Subgraph indexed sequential subdivision is a technique 
suggested to address these difficulties by accelerating the process of 

continuously matching subgraphs on dynamic knowledge graphs [37]. 
This contribution builds upon several others. Borgwardt et al. [38] 
consider how pattern mining on static graphs may be applied to time 
series of graphs. Blin et al. [39] offered a precise technique for querying 
graph patterns based on dynamic programming and color-coding. 

To classify both static and dynamic networks, Gehweiler et al. [40] 
provide a distribution heuristic that relies only on limited, locally 
observable information. To find similar concepts in ontologies, Benik 
et al. [41] proposed a technique for annotation (taxonomy) graph 
analysis based on a combination of tree distance metrics and the in
spection of a dense subgraph. Agarwal et al. [42] provide methods for 
identifying time-sensitive occurrences in microblog posts (expressed as 
knowledge graphs). This allows for instant notification of such events 
depending on the density of individual subclusters. To better understand 
dynamic networks and, in particular, the temporal behavior of vertices 
using betweenness centrality through time, Fairbanks et al. [43] suggest 
a technique for mixing sparse parallel graph algorithms with dense 
parallel linear algebra algorithms. While not the focus of this section, it’s 
worth mentioning that graph summarization techniques [44] can also 
play a role in pattern mining. These methods aim to simplify the graph 
while preserving its essential structural and semantic properties, thus 
potentially aiding in the efficient discovery of meaningful patterns. Shah 
et al. [44] demonstrate how to do so by lowering the encoding cost in
side a data compression paradigm. They then apply this method to the 
construction of TimeCrunch, a scalable and parameter-free tool for 
finding dynamic graph summaries. To bridge the knowledge gap be
tween human tasks and current methodologies, Gao et al. [45] suggested 
an end-to-end video classification system based on a structured knowl
edge graph replicating dynamic knowledge accumulation in movies over 
time. Using an iterative recognition of atomic changes and information 
gain, Kapoor et al. [46] provide an interestingness metric on elements of 
the KGs. The idea of minimal description length inspired this research 
(MDL). 

Complementary, summarization tasks on KGs are based on finding 
groups of nodes that are highly cohesive. In this sense, we may extend 
the idea of community-finding in graphs to knowledge graphs as well. 
Zakrzewska’s work [47] extend the concept of community-finding in a 
dynamic graph scenario. The process of locating communities in dy
namic graphs may be divided into the following steps: 1) application of a 
greedy static technique that optimizes modularity. 2) keeping a record 
of merging history. 

In the realm of pattern discovery within knowledge graphs, existing 
works like those by Qin [35], Nguyen [36], and Borgwardt et al. [38] 
focus primarily on static graphs or the computational aspects of dynamic 
graphs but overlook the significance of the structural and semantic 
changes over time. Gao et al. [45] venture into the territory of 
time-sensitive knowledge graphs but their work is based on LSTM 
(Long-Short Term Memory) and Attention mechanisms just like many of 
the reasoning systems that are seen. Kapoor et al. [46] introduce an 
interestingness metric, but their methodology is focused on quantifying 
informativeness of a pattern for summarizing, instead is not suitable for 
generating potential important relationships that impact the structure of 
knowledge. Even though, we have seen algorithms [47] for finding 
communities in dynamic graphs, we have not seen this applied in dy
namic knowledge graphs. 

2.4. DKG applications 

In terms of applications of such research to text reasoning tasks, 
Choudhury et al. [48] offer an end-to-end framework for building 
bespoke knowledge graph-driven analytics. Lang et al. [49] present a 
semantic knowledge reasoning graph model based on the multidimen
sional axiomatic fuzzy sets (AFS). Another proposal built a Narrative 
Analytics-Assisted System (NAAS) that uses a knowledge graph [50]. In 
order to produce the knowledge graph (KG) and construct reasoning 
routes for reading comprehension tasks through unsupervised learning. 
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We also have seen other application in text mining, namely search query 
finding [51], chatbot development, data integration, and semantic 
search [52]. We also have seen the applications of knowledge graphs on 
text mining in the construction of interpretable features that are of po
tential use for the task of text classification [53]. Lastly we see KGs being 
used for entity linking and entity retrieval of different types of texts [54, 
55] as well as creating embedding representations [56,57]. 

In addition, we have seen DKGs being used in the geoscience field to 
perform knowledge discovery of encyclopedic discipline knowledge 
[58]. KGs are also being utilized in today’s trends in integrating 
collected, analyzed, and managed pavement knowledge assets, which is 
fundamental to the problem solving process in pavement engineering 
[59]. We have also seen that it can be used for reasoning over geoscience 
metadata repositories [60]. This has also been seen as essential for 
making geographic data accessible for the Semantic Web and machine 
learning [61] as well as efficient storage and retrieval systems for 
archival data [62]. This idea is also extended to manage the relation
ships between geographic entities and derive other relationships [63]. 

Applications in other domains are also seen. Zhao et al. [64] devel
oped knowledge graphs to aid software developers and project managers 
in making sense of software repositories. Tolerogenic cell therapy is one 
area where we see instances of knowledge networks being automatically 
constructed from studies published in biomedical literature [20]. 
Through the use of crowdsourcing and reverse captchas, Weng et al. 
developed a knowledge graph in the area of educational systems [24]. In 
the field of computer vision we see Kalanat et al. [65] use a scene graph, 
a graph representation of an image, to capture visual components and 
features. 

2.5. Related studies in knowledge graphs 

Advancements in knowledge graph refinement techniques have 
proliferated their use across various domains. These techniques range 
from data pruning to gap-filling methods [66], automated knowledge 
base generation from electronic medical data [67], and employing 
commonsense knowledge for natural language understanding [68]. 
There are also efforts focused on precise recommendations using 
Knowledge-aware Graph Neural Networks (KGNNLS) [69], knowledge 
graph completion through pre-trained language models [70], and tex
tual inference frameworks for answering intuitive queries [71]. 

Recent advancements in graph stream summarization have led to 
significant improvements in real-time graph analytics. The work by Jia 
et al. [84] introduces a method for persistent graph stream summari
zation (PGSS), which allows for efficient querying of graph streams over 
arbitrary historical time ranges. The proposed approach, grounded on 
hierarchically organized hashmaps, shows substantial accuracy and ef
ficiency over traditional methods. The proposed PGSS-BDH and 
PGSS-MDC sketches can significantly enhance query performance, 
making it a promising solution for large-scale dynamic graph analysis. In 
the domain of image clustering, the study by Gao et al. [85] presents 
Gomic, a technique that leverages self-supervised learning within het
erogeneous graphs. This approach facilitates multi-view image clus
tering and exhibits the potential to outperform existing methods in 
terms of both clustering accuracy and computational efficiency. The 
co-learning aspect of the method can provide new insights into the 
community detection within knowledge graphs. These studies highlight 
the dynamic nature of graph and image data processing, paving the way 
for more sophisticated analytical tools in knowledge graph evolution 
and community detection. 

Recent review works have systematized the fundamental concept of 
knowledge reasoning [72], provided summaries and future directions 
[73], and even explored taxonomies in the field [73]. The work by Ojo 
et al. [74] focuses on finding hidden relationships between datasets 
through a knowledge trees. Despite the progress, existing works have 
limitations when it comes to considering the dynamic and temporal 
aspects of knowledge graphs. For instance, [66] lacks focus on dynamic 

changes over time, while [67] is limited to medical data. Similarly, [68, 
69] do not address the adaptability of models to evolving data. This gap 
represents a significant shortcoming, particularly in the context of our 
research that aims to study the temporal aspects of network science in 
knowledge graphs. Our work seeks to extend the existing body of 
knowledge by focusing on the temporal dynamics, thereby filling a 
crucial gap in the literature. 

3. Methods 

3.1. Understanding the gap 

Taking into account the previously referenced literature, we believe 
it is relevant to obtain an overview of the research that was carried out in 
this context. Using the Scopus database and the following query: ALL 
("knowledge graph" AND "generate") and filtered only articles that are in 
their final form in proceedings and journals, eliminating drafts or arti
cles under review, we are able to extract the articles and conference 
papers pertaining to the aforementioned fields. Using co-occurrence of 
keywords on the resulting 1961 documents, we are able to build a 
keyword network that shows us the sub-areas and related areas within 
this field. To better understand this network, we performed community 
finding. Fig. 1 shows the edge density representation of this network 
where each color represents a community of keywords and the higher 
density color represents higher density of co-occurrence. Quite clearly, 
we can see that ‘semantics’ is a central term to this graph, even though it 
was not on the search query. Interestingly it is also in a high betweenness 
node (a bridge node) among different communities. Among the tree 
generated communities we have: 1) (on the top) the knowledge graph 
and semantics group, 2) (on the left) the machine learning and 
computational linguistics group, and 3) (on the right) the context of 
application of the previous techniques (where we can see with less 
emphasis keywords like: ‘humans’, ‘controlled study’ and ‘covid-19′). 
This visualization helps us understand the gap in literature as it reveals a 
lack of studies in both community finding and dynamic knowledge 
graphs. 

3.2. Building the knowledge graph 

Using the Web of Science database, we extracted the SIGKDD con
ference publications between 2013 and 2021, including the year, title, 
authors and abstract. After accessing the core literature, we proceeded 
to design the experiment. Using KnowGL [28] on the extracted abstracts, 
we retrieved the triplets with entities and relations. The KnowGL parser 
provides RDF compliant knowledge through the usage of a 
domain-agnostic Knowledge Exploitation Patterns abstract the induced 
KG [75]. The resulting triplet structure has the following structure “ 
[(subject mention # subject label # subject type) |relation label |(object 
mention # object label # object type)] ” [28], allowing for the definition 
of annotations on the subjects and objects. An instance of this can be 
found in the following example: “Learning is not necessarily machine 
learning” is turned into [(machine learning#Machine learning#aca
demic discipline) | different from | (Learning#Learning#biological 
process)]. This imposes the assignment of a type based on context, yet 
this may be redefined later on based on other edges or via the analysis of 
inconsistencies on the knowledge graph. Yet, that is not the focus of this 
study. Using the triplets, we built the knowledge graph by representing 
the entities as nodes and adding edges between them with the corre
sponding directed relation. To do so, we use the subject and object labels 
to minimize the redundancy of nodes that have the same meaning, 
instead of subject mention. This means that for instance in the following 
text: “We propose an ML algorithm.” And “Machine learning is used for 
classification.”, generates the following 2 triplets: 

[(ML algorithm#Machine learning#academic discipline) |instance 
of |(algorithm#Algorithm#work)]; 
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[(classification#Statistical classification#machine learning) |part 
of|(Machine learning#Machine learning#academic discipline)] 

This results in the ’Machine learning’ node will be a single node with 
degree of 2 instead of a 2 nodes with a degree of one. Additionally, since 
this is based on a sequence-to-sequence model similar to BART [76] it is 
able to handle some typos and still generate subjects and objects on the 
correct label. 

In the construction of our knowledge graph, we interpret the various 
mentions as aliases (skos:altLabel) of the entities, thereby enhancing the 
graph’s semantic richness and ensuring consistency across diverse no
menclatures within individual documents. For example, a single node 
might aggregate multiple subject mentions such as [Machine Learning, 
ml, ML, learning], reflecting the exact references to a single concept 
(skos:exactMatch) based on structures like “Machine learning (ML)”. 
When associating a node with a subject or object mention, such as 
‘learning’, we first consult the entity’s alias (skos:altLabel) from that 
document. This procedure allows us to determine whether the mention 
aligns with existing records, promoting ontological coherence. If a 
congruence is identified, we elect to circumvent the originally desig
nated node from type and instead merge the entities within the node in 
the designated document. This methodology not only preserves se
mantic integrity but also fortifies the interconnectedness and compre
hensive representation of concepts within the knowledge graph. 
Effectively classifying learning in the machine learning node, instead of 
a separate node. Yet, a limitation of the current approach is if the type is 
incorrectly assigned throughout an entire abstract and then joined into 
the full knowledge graph. This may cause the new knowledge to be 
added to the wrong node. This may be further studied in the future using 
better alternatives to label assignment than KnowGL or knowledge 

graph refinement techniques that are context sensitive. On the other 
hand, this method is generalizable to knowledge from many disciplines 
and is able to generate new entities and relation labels that have not 
been previously seen based on sentence structure. 

Since the resulting structure can have several relations between the 
same pair of nodes, this is a MultiDiGraph (or a multilayer directed 
graph). The MultiDigraphs are generated by separating each set of ab
stracts by year, so we have one MultiDiGraph per year. 

3.3. Analyzing the knowledge graph 

The analysis of the resulting MuliDiGraphs is done by acquiring 
informative statistics and understanding how they evolve along time. A 
central concept is the degree 〈 k 〉 of a node, which is the number of 
neighbours of that node. Another important concept is betweeness 
centrality, 

CB (v) =
∑

s,t ∈V

σ(s, t | v)
σ(s, t) ,

measuring how important a node is in connecting communities of nodes. 
V is the set of nodes in the network, σ(s,t) is the number of shortest paths 
in a network and σ (s,t | v) is the fraction that flow through the node v. A 
high betweenness centrality means that node is an important bridge 
between communities, and literally, it means the percentage of shortest 
paths in the network flow through that node, as defined in [77]. 
Closeness centrality measures how close a node is to every other, i. e. 

Cc(u) =
n − 1

∑n− 1
v=1d(v, u)

,

Fig. 1. Knowledge graph density representation shows 3 main clusters regarding research themes: blue, pink and orange.  
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the reciprocal of the average shortest path distance from any other node 
in the network to the node, u. Where, n is the number of nodes in the 
network and d(v,u) is the distance between the nodes v and u. 

In the discipline of network science, community finding is a prom
ising clustering technique. A community is a set of densely inter
connected nodes relative to their number of connections to external 
nodes. Thus, it is possible to divide a connected component into two or 
more communities [78]. We also used community finding based on 
modularity optimization of groups of nodes. This algorithm maximizes 
intra-cluster modularity, 

Q =
∑n

c=1

[
Lc

m
− γ

(
kc

2m

)2
]

,

where, Lc are the links within a community, c is the number of com
munities, m is the total number of edges, is the resolution parameter, kc 
are the degrees of the nodes in a community individually summed and 
then multiplied. The optimization process is the one defined by Clauset 
et al. [79]. This operation was done using the undirected collapsed 
version of the graph, since we can consider that if we know the rela
tionship between two entities in one direction we can also consider that 
we know the inverse relationship. 

To understand the knowledge communities over time, we measure 
how their size and main topic evolves along time in yearly graph, by 
looking at the communities of the knowledge of each year. 

3.4. Extending the knowledge graph 

Going beyond the giant weakly connected component over time, we 
aggregated the knowledge of the subgraphs. The following artifact then 
allows us to contribute to challenge of interpretable recommendations 
based on KGs, going beyond current KG based recommender systems 
[80]. The most common approaches include collaborative filtering, 
content-based filtering, or hybrid methods that often work within the 
context of a single (usually strongly) connected component. They are 
generally optimized for objectives like accuracy, diversity, or seren
dipity of recommendations within the scope of available connections in 
the graph. This proposal is a foundation for generative knowledge 
graph-based recommender systems (Fig. 2). We propose an algorithm 

for generating edges with the highest impact on knowledge graph 
connection of previously unconnected components, Knowledge 
Connector Candidate (KC2). The edge candidate generation algorithm is 
described below in Algorithm 1. 

The main idea is to iteratively generate edges between weakly con
nected components and measure the impact of said edge by the CC of the 
two connected nodes. Let, X and Y be the two previously unconnected 
components, I(x, y) 

I(x, y) = log2(CC(x)) + log2(CC(y)),

where x ∈ X and y ∈ Y are the two candidate nodes for connection. The 
log2 are added to normalize the results an bring upward pairs of 
important nodes in smaller communities within a rank. This takes on the 
assumption that a higher impact comes from connecting two important 
terms from two sizable and previously unconnected components, 
through the most well-connected node. We propose this feature for 
selecting and preforming logarithmic normalization of centrality, that is 
a higher-order network property that KG recommender systems do not 

Fig. 2. Methodological approach.  

Algorithm 1 
Assign high impact candidate connections.  

1: function EdgeCandidateImpact(G) 
2: wcc ← weaklyConnectedComponents(G) ▹ dict id: node list 

3: cc ← clossnessCentrality(G) ▹ dict node: closeness centrality 
4: maxCC ← 
5: for k,v ∈ wcc do 
6: maxCC[k] ← max(v,key ← lambda(x: cc[x])) 
7: end for 
8: for X ∈ range(len(wcc)) do 
9: for Y ∈ range(len(wcc)) do 
10: if X ∕= Y then 
11: x ← maxCC(X) ▹ max value of each set 
12: y ← maxCC(Y) 
13: if (l,k) ̸∈ dictCandidates.keys() then 
14: dictCandidates[x,y] ← I(x,y) 
15: end if 
16: end if 
17: end for 
18: end for 
19: return dictCandidates 

20: end function  
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consider [81]. The emphasis on closeness centrality as a measure of node 
importance for connecting different components is unique. KG recom
mender systems often use other forms of scoring, like personalized 
PageRank or matrix factorization, to rank items for individual users 
[81]. 

These can be then used for ideation of future projects by conference 
authors, as well as ideas for creating novel tracks within the conference. 
This study can be replicated in both scientific journals as well as in 
conference proceedings. For example, it can identify emerging areas of 
interest or flag declining trends in existing topics, thus providing 
actionable insights for the academic community. By adopting this 
technical approach, we aim to bridge the gap between community 
finding and knowledge to provide a more cohesive solution that pro
vides pairs that maximize connectivity. This will allow us to derive 
meaningful narratives and potential knowledge triplets that can stimu
late future work in various domains. 

3.5. System design implications 

The usage of communities within knowledge graph, that we can 
denote as communities of knowledge, has several implications in terms 
of system design. This is relevant for Community-Based Indexing and 
similarly for Selective Caching as well as Query Routing and Community 
Monitoring. 

Proposition 1. Indexing nodes belonging to the same community together 
reduces the average number of disk seeks for query execution. 

Proof. Let n be the total number of nodes and m be the number of 
communities. For a random query Q, let p(Q,Ci) be the probability that Q 
is contained within community Ci. 

The expected number of disk seeks Es without community-based 
indexing is proportional to n: 

Es∝n.

With community-based indexing, the expected number of disk seeks 
E’s is: 

E′s∝
∑m

i=1
p(Q,Ci)⋅|Ci|.

Since |Ci| ≪ n and p(Q,Ci) is often substantially higher within a 
community, E′s < Es. 

Proposition 2. Selective caching of frequent query results within a com
munity reduces the computational load. 

Proof. Let F(Q,Ci) be the frequency of query Q within community Ci, 
and T(Q) and T’(Q) be the computational time for Q without and with 
caching, respectively. 

We have T’(Q) < T(Q) due to caching. Therefore, the computational 
load with caching, F(Q,Ci) ⋅ T’(Q), is strictly less than without caching, F 
(Q,Ci) ⋅ T(Q). 

Proposition 3. Using community information optimizes query routing, 
thereby reducing the execution time of paths. 

Proof. Let P(Q) be the set of all possible paths for query Q. Without 
community information, the query processor selects p ∈ P(Q) uniformly 
at random. 

With community information, the query processor can prioritize 
paths p’ ⊂ P(Q) that are within a community. The expected time Ep for 
path selection becomes: 

E′p < Ep.

Since community-based paths are more likely to be cached or 

indexed, leading to faster execution. 

Proposition 4. Real-time tracking of community structures ensures the 
system adapts to evolving data. 

Proof. By continuously monitoring the modularity Q or other com
munity metrics, the system can dynamically recompute communities 
and update indices and caches, ensuring E’s remains optimal. 

4. Results and discussion 

In this section we explore the network patterns, namely the evolution 
of:  

• publication volume;  
• centralities of top terms;  
• network community characteristics;  
• top terms and their communities;  
• entity and relationship creation over time. 

Additionally, we also analyse the aggregate graph with the knowl
edge from all years and analyse the importance distributions and apply 
the proposed method for the generation of knowledge candidates and 
links. 

4.1. Publication volume 

To give a context to this analysis, Fig. 3 shows the number of pub
lications over the years. The number of publications in 2021 are already 
more than double the number of 2013, with a steady growth. 

Using the defined methodology, we then create the knowledge 
graphs. Fig. 4 shows a representation of an instance of the generated 
graphs. This figure shows us a slice of the full dynamic knowledge graph. 
We can see several nodes that have high degree, yet most of them have a 
low degree. 

4.2. Centralities of top terms 

Using their topological information, we plot the evolution of degree 
of the top ten nodes (Fig. 5) with the highest average. This shows us that 
the entity ’algorithm’ is clearly the most important regarding the 
number of elements that are semantically connected to it. The remaining 
nodes have an upward trend of degree, meaning that each year there are 
more articles that relate that concept with another. Nevertheless, this 
effect can be caused by the growing number of articles. The exception to 
this rule is the term ’network’, over the last year. 

Using the betweenness centrality indicator, we can see who is con
necting the majority of the semantic paths in the network (Fig. 6). We 
see a steady downward trend of the entity ‘algorithm’. The stronger 
contender for the most important bridging term is ‘machine learning’. 
This can be a sub-product of a hype trend cycle [82]. 

In terms of closeness centrality (Fig. 7), ‘machine learning’ has now 
overturned ‘algorithm’. This means that it is closer to the remaining 
terms within the focus of the conference. Again, indicating a shift in 
focus of the venue. 

The degree distribution of the knowledge graphs of each year helps 
us better understand the extent of the connections and how they evolve. 
In this case we see that the distribution of degrees over time is only 
changed by the number of nodes. However, the distribution itself is not 
particularly dynamic in the sense that the proportion of each type of 
degree group is the same over time (as seen in Fig. 8). 

The results of the distribution of knowledge generated in this venue 
resembles a scale-free network degree distribution [83]. In the Proba
bility density functions, if (loglikelihood ratio between the two distri
butions) is positive and (the statistical significance of that ratio) is less 
than 0.05, this suggests that the power-law model is a better fit to the 
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data than the exponential model. In the CCDP we can see what pro
portion of nodes has a degree higher than the degree corresponding to 
these percentiles, showing very close values to a power law. This may 
corroborate that the knowledge generated seems to follow a preferential 
attachment of topics, which is to be expected since this venue is focused 
on specific fields. And these fields act as centers for community struc
tures. Interestingly this might mean that semantic knowledge follows a 
fractal geometry, hence why analogies may work from some sub fields to 
others, given the self-similar, fractal nature of scale-free networks means 
that small sub-networks can resemble the overall structure of the 
network. This could lead to localized insights that, surprisingly, apply to 
the entire knowledge graph. 

4.3. Network community characteristics 

To understand the community structure, we look at the knowledge 
communities. Fig. 9 shows a network plot for the communities generated 
for a particular year. This shows us that each community has a small set 
of very important nodes, i.e. 1 or 2 most representative nodes per 
community. 

Then, by applying the intra-cluster modularity optimization com
munity finding algorithm by Clauset et al. [79] over the years, we see the 
distribution of community size leaning towards bigger communities (see 
Fig. 10). This is interesting since we are considering the contributions 
per year without considering the aggregated knowledge from previous 
years. This shift means that the knowledge generated is more inter
connected by itself. 

Fig. 3. Evolution of KDD publications over the years.  

Fig. 4. Network representation for the 2013 KG.  
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4.4. Top terms and their communities 

To better understand what these communities mean, we look at the 
most important entity per community over the years through the 
closeness centrality (see Fig. 11). This representation looks at commu
nities with at least 20 entities to minimize entropy on plotting and an
alyses yearly contributions independently. Using the parallel 
coordinates, we can see that the community containing ’algorithm’ has 
always been the most important until 2019, when ‘learning’ sets the 

biggest community. This is also an important transition year since it was 
the last time that ‘machine learning’ term was the most important of its 
cluster. We also see that since 2020, the ‘graph’ community has been the 
biggest. We observe an increasing importance on the ‘learning’ and ‘e- 
commerce’ as well. Using the generated visualizations we are able to 
filter the community flows based on a specific community. Fig. 11 shows 
the filter of the community containing ‘graph’ in 2021. Here we can 
trace the origins of the terms for this large community. 

Using the generated community structures we then measure how 

Fig. 5. Evolution of degree in top 10 highest degree nodes on a log scale.  

Fig. 6. Evolution of betweenness centrality in top 10 highest betweenness centrality nodes.  

Fig. 7. Evolution of top 10 nodes in closeness centrality over time.  
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modular these are (Fig. 12). The curve is approximately constant given 
the range of modularity. This means that the cohesion of the bigger 
communities remains stable. So, do we have a shift in growth? Are we 
witnessing a higher connection more in connecting existing entities than 
creating new ones, in the SIGKDD conference? 

Fig. 13 answers the above questions. We see a clear trend on 
generating more relations each year than entities. So, the focus of 
SIGKDD at this point is to bridge the semantic gaps by connecting 
existing ideas with new relations. Nevertheless, we still see an increasing 
number for both over the years. 

Now that we understand the evolution of the knowledge commu
nities over time, we may look at the aggregated knowledge graph, 
comprising the publications over eight years (2013–2021) of the 
SIGKDD Conferences used in the analysis. This network has 20,228 en
tities and 21,297 edges. From which we may generate more edges based 
on the KEG approach of the methodology. We see in Fig. 14 that we have 
a similar distribution to individual year graphs. The importance of nodes 
in Fig. 15, based on degree centrality, shows us that there is a low 
number of nodes with heightened importance. This tells us that there is a 
very clear set of central topics within the conference. 

In Fig. 16 with the aggregated KG, we can see quite clearly 5 com
munities: the Algorithm community (blue) which is quite dispersed and 
well connected with the remaining communities within the giant 
component, the machine learning (ML) community (purple) that con
tains a set of learning algorithms, interestingly the optimization com
munity is much smaller and separated from ML, the data and 
information community (green) that contains concepts regarding the 
data used in different studies, and lastly the knowledge community 
which is parallel to the machine learning community and still well 
connected to the data community. Yet, looking at the full network, there 
are still many unconnected nodes in the full aggregated graph. 

4.5. Entity and relationship creation over time 

So, there are many impactful relations that may improve the con
nectivity in the published research knowledge. To this end we apply the 
Algorithm 1 to generate high impact candidate connections based on the 

defined importance function (4). Below, we show the top importance 
pairs generated sorted by descendent order of impact. The tuple that 
generates the highest impact in network connectivity is ‘(‘algorithm’, 
‘Commonwealth of Nations’)’, effectively increasing the richness of the 
entire network. 

[(‘algorithm’, ’Commonwealth of Nations’), 
(‘algorithm’, ’outlier’), 
(‘Transformer’, ’real estate’), 
(‘Transformer’, ’outlier’), 
(‘algorithm’, ’urban area’), 
(‘Transformer’, ’constraint’), 
(‘outlier’, ’urban area’), 

The algorithm identifies a potentially valuable link between 
computational methods (algorithms) and the Commonwealth of Na
tions. This might imply a need or opportunity for algorithmic ap
proaches to challenges or data related to the Commonwealth. A link 
between ‘algorithm’ and ‘outlier’ suggests that algorithms might play an 
important role in outlier detection, which is often true in data science. 
The Transformer model may have applications in the real estate in
dustry, perhaps for property valuation, recommendation systems, or 
natural language queries about properties. Another pair, ‘Transformer’ 
and ‘outlier’, could imply that Transformer models have applicability in 
identifying outliers, perhaps in sequential data or time series. Algo
rithms may also have significant applications in urban planning, crowd 
control, or smart city initiatives, as indicated by the pair ’algorithm’ and 
‘urban area’. The pair ’Transformer’ and ’constraint’ suggests that 
Transformer models might be relevant when dealing with constraint- 
based problems, perhaps in optimization scenarios. Finally, ’outlier’ 
and ‘urban area’ indicate that outlier detection could be an important 
aspect of various urban phenomena, from traffic patterns to utility 
usage. 

The theoretical implications of this paper can be broken down into 
two categories. First, the paper proposes a dynamic knowledge graph 
longitudinal analysis based on network science principles, and the 
principles of community detection. Second, the paper focuses on the 

Fig. 8. Degree distribution, Probability density functions and Complementary Cumulative Distribution Function over the years.  
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Fig. 9. Communities generated for the 2013 Knowledge graph.  

Fig. 10. Community size distribution over the years.  
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application of this analysis on a specific context and the corresponding 
implications of doing so. Hence, this study implies that future research 
on dynamic meta-knowledge network representation can use the pro
posed methodology to better understand trends and evolution of 
knowledge in different fields. As practical implications of this study, the 
KDD conference program committees may identify future connected 
research topics and tracks based on unconnected knowledge. Addi
tionally, we see empirical evidence for more a higher focus of knowledge 
integration instead of the construct creation. 

5. Conclusion and future research 

Research results show that the KDD conference and contributing 
communities has been evolving over the last nine years. The KDD 

conference is increasingly focused on a limited set of domains. Emerging 
publications in KDD appear to favor the creation of relations instead of 
entities. 

Cohesion of the generated communities over time is constant and the 
average community size grew over time. Focus of the papers evolves 
with an increasing importance of ‘graph’, ‘learning’ and ‘e-commerce’ 
communities is observed. The ‘algorithm’ community was historically 
the most important. However, in the recent years, the ’graph” commu
nity is positioned at the top for the first time. 

In this work, a review of state-of-the-art principles to generate and 
analyze dynamic knowledge graphs is undertaken. A further discussion 
of complementary application domains is undertaken, motivating the 
viability of the targeted analytics towards the KDD corpus in a temporal 
domain. A brief review of the application domains and the techniques 
form finding patterns in such knowledge representation was also done. 
To instantiate the concepts explored, the corpora from the KDD papers 
was used to generate a dynamic knowledge graph over the period of 
2013–2021. The analysis of communities was done along with the 
centrality analysis over time. A method for generating high impact re
lations was proposed and instantiated. In the future, the analysis pre
sented can shed a better understanding on different domains of 
applications. New methods regarding generation of candidate knowl
edge triplets can be the subject of further development. The study of the 
relationships between the connected components, communities and the 
research community itself, may be of interest. 
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Fig. 13. New entities and relations by year.  

Fig. 14. Degree distribution over the aggregated knowledge graph.  

Fig. 15. Rank of Importance of generated entity pairs.  
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